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Abstract. A recent letter by Lesk purporting to calculate the free energy of a hard-sphere 
gas is shown to be incorrect. 

In a recent letter, Lesk (1974) gives as a closed-form solution to the hard-sphere gas 
partition function 

which may be rewritten as 
1 N - 1  

N !  k = O  
Q(N, J') = - n (J'-kvo)s 

where the missing 1/N! has been included. Apart from this missing term, simple 
geometrical considerations immediately show that the result is false for N > 3. It is 
however true in the zero-density limit, and represents a weak upper bound on the true 
partition function. It does not reproduce the known correct result in one dimension. 

The canonical partition function for N + 1 particles can be written as 

j =  1 
i < j  

with 

if r < ro 

otherwise. 

Lesk claims that this can be rewritten as 

e(r )  = 

Q(N+1, V )  = ~ JR drN + 1 
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where the region of space R(rl . . . r N )  ‘consists of a disjoint set of N balls, each of volume 
V,, surrounding each of the first N particles’. This result is not true, since the region 
of space R(rl ,  . . . , rN)  is very complex, and is given not only by the volume surrounding 
N balls, but also by certain complex volumes generated by the excluded regions of 
space in certain configurations. These volumes depend on the positions of the other 
N balls, and so the integral cannot be decoupled in the manner claimed. 

For a one-dimensional system, an approach along these lines can be employed (see 
for example Thompson 1972), but it does not generalize to higher dimensions. In one 
dimension we can write 

V 

Q ( N ,  V )  = J dr, J r N - r  drN-l . . . [3-rdr2 Jor2-r dr, 
(N - 1)r ( N  - 2)r 

which on substituting U = V - ( N -  l)r gives Q(N,  V )  = u N / N ! .  Unfortunately, the 
solution to the long outstanding hard-sphere problem is just not that easy. 

I would like to thank Drs C Pask and E R Smith for useful comments. The hospitality 
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