On a recent letter by Lesk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1975 J. Phys. A: Math. Gen. 8 L32
(http://iopscience.iop.org/0305-4470/8/3/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:05

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On a recent letter by Lesk

A J Guttmann
Department of Applied Mathematics, Research School of Physical Sciences
and
The Computer Centre, Australian National University, Canberra, ACT 2600, Australia and
Department of Mathematics, University of Newcastle, NSW 2308. Australia

Received 14 January 1975

Abstract

A recent letter by Lesk purporting to calculate the free energy of a hard-sphere gas is shown to be incorrect.

In a recent letter, Lesk (1974) gives as a closed-form solution to the hard-sphere gas partition function

$$
Q(N, V)=V_{0}^{N} \frac{\Gamma\left(\left(V / V_{0}\right)+1\right)}{\Gamma\left(\left(V / V_{0}\right)+1-N\right)},
$$

which may be rewritten as

$$
Q(N, V)=\frac{1}{N!} \prod_{k=0}^{N-1}\left(V-k V_{0}\right)
$$

where the missing $1 / N$! has been included. Apart from this missing term, simple geometrical considerations immediately show that the result is false for $N>3$. It is however true in the zero-density limit, and represents a weak upper bound on the true partition function. It does not reproduce the known correct result in one dimension.

The canonical partition function for $N+1$ particles can be written as

$$
Q(N+1, V)=\frac{1}{(N+1)!} \int \mathrm{d} r_{N+1} \int \cdots \int \mathrm{~d} r_{N} \cdots \mathrm{~d} r_{1} \prod_{\substack{i=1 \\ j=1 \\ i<j}}^{N} \theta\left(r_{i j}\right) \prod_{i=1}^{N} \theta\left(r_{i, N+1}\right)
$$

with

$$
\theta(r)= \begin{cases}0 & \text { if } r<r_{0} \\ 1 & \text { otherwise }\end{cases}
$$

Lesk claims that this can be rewritten as

$$
Q(N+1, V)=\frac{Q(N, V)}{N+1} \int_{R} \mathrm{~d} r_{N+1}
$$

where the region of space $R\left(r_{1} \ldots r_{N}\right)$ 'consists of a disjoint set of N balls, each of volume V_{0}, surrounding each of the first N particles'. This result is not true, since the region of space $R\left(r_{1}, \ldots, r_{N}\right)$ is very complex, and is given not only by the volume surrounding N balls, but also by certain complex volumes generated by the excluded regions of space in certain configurations. These volumes depend on the positions of the other N balls, and so the integral cannot be decoupled in the manner claimed.

For a one-dimensional system, an approach along these lines can be employed (see for example Thompson 1972), but it does not generalize to higher dimensions. In one dimension we can write

$$
Q(N, V)=\int_{(N-1) r}^{V} \mathrm{~d} r_{N} \int_{(N-2) r}^{r_{N}-r} \mathrm{~d} r_{N-1} \ldots \int_{r}^{r_{3}-r} \mathrm{~d} r_{2} \int_{0}^{r_{2}-r} \mathrm{~d} r_{1}
$$

which on substituting $v=V-(N-1) r$ gives $Q(N, V)=v^{N} / N$!. Unfortunately, the solution to the long outstanding hard-sphere problem is just not that easy.

I would like to thank Drs C Pask and E R Smith for useful comments. The hospitality of Professors B W Ninham and M R Osborne at the ANU is gratefully acknowledged.

References

Lesk A M 1974 J. Phys. A: Math., Nucl. Gen. 7 L146-8
Thompson C J 1972 Mathematical Statistical Mechanics (New York: Macmillan) pp 81-4

